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The Euler equations describe the flow phenomena of compressible inviscid gas
dynamics. We simulate such flows using a higher-order Cartesian-grid method,
together with a special treatment for the cells cut by the boundary of an object.
A new method for the treatment of the boundary is described where these cut bound-
ary cells are maintained as whole cells rather than as cut cells, thus avoiding stability
problems. The method is second-order accurate in one dimension and higher-order
accurate in two dimensions but not strictly conservative; however, we show that this
error in the conservation does not lead to spurious phenomena on some represen-
tative test calculations. The advantages of the new boundary treatment are that it
is higher-order accurate, that it is independent of the applied method, and that it is
simple. c© 1998 Academic Press

Key Words:finite-volume schemes; hyperbolic conservation laws; boundary treat-
ment; CLAWPACK package; Euler equations.

1. INTRODUCTION

A Cartesian-grid method consists of a standard method for the regular cells and a special
treatment for the boundary cells. Cartesian-grid methods can take full advantage of fast
computer architectures like vector or parallel computers. Cartesian-grid methods are flexi-
ble, i.e., they can be used for flow simulations around complex geometries. In the literature
Cartesian-grid methods with different approaches for the boundary treatment can be found
which are of first order. Berger and LeVeque [1] use rotated boxes to get stability, Colella
[9] uses flux-redistribution procedures, and Quirk [10] uses merging procedures. The main
problem is to avoid instability arising from small boundary cells and to achieve a high
order of accuracy along the boundary. In [4] we presented such a scheme. In this paper
a new method for the boundary treatment is given which is stable, higher-order accurate
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and simpler than the one given in [4]. Above all it is easy to extend this new approach to
three-dimensional calculations.

The compressible inviscid flow in two dimensions is described by the Euler equations:

Ut + Fx +Gy = 0, (1)

U =


ρ

ρu
ρv

ρe

 , F =


ρu

ρu2+ p
ρuv

u(ρe+ p)

 , G =


ρv

ρuv
ρv2+ p
v(ρe+ p)

 ,

p = (γ − 1)

(
ρe− 1

2
ρ(u2+ v2)

)
,

whereρ is the mass density,(u, v)T is the velocity vector,ρe is the energy density,p is the
pressure, andγ = 1.4.

It is a system of nonlinear hyperbolic equations. Thus, one has to use a method which
is able to treat shock waves. Leth be a grid parameter and setxi = x0+ ih, yj = y0+ jh,
i, j ∈ Z. The regular Cartesian grid cellCi j is then given by

Ci j = [xi , xi+1] × [yj , yj+1]. (2)

The numerical solution at timetn is given by approximations of the cell averages of the
exact solutionU(x, y, tn) over the grid cells:

Un
i j ≈

1

h2

∫
Ci j

U(x, y, tn) dx dy. (3)

An integration of Eq. (1) over the cellCi j yields a method to advance these approximations
Un

i j to a new approximate solutionUn+1
i j at timetn+1 = tn +1t ,

Un+1
i j = Un

i j +
1t

h

(
Fn

i j − Fn
i+1, j +Gn

i j −Gn
i, j+1

)
, (4)

where the fluxesFi j ,Gi j (Fi j is the flux between the cellsCi−1, j andCi j , andGi j is the
flux between the cellsCi, j−1 andCi j ) are given by the numerical method.

One method to calculate the fluxesFi j ,Gi j is LeVeque’s multidimensional method [7]
which is of second-order accuracy and stable up to a Courant numbercfl= 1.0, because it
takes into account transverse fluxes. The Courant number is defined by

cfl = 1tvmax

h
, (5)

wherevmax is the maximum characteristic speed occurring in the solution. This shock-
capturing scheme is used for the numerical experiments.

If an object is put into a Cartesian grid, then a special treatment of the cells cut by the
boundary of the object is necessary. Pemberet al.[9] give a method which makes it possible
to treat these boundary cells like regular cells, thus avoiding instability problems for small
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FIG. 1. Symmetry line of a wall boundary for an inviscid flow.

cut cells. The method is first-order accurate along the boundary. Our new method also treats
boundary cells as whole cells but is of higher-order accuracy along the boundary.

The new approach is motivated by the fact that for an inviscid flow a straight reflecting wall
boundary behaves like a symmetry line. Suppose the straight boundary line goes through
the pointz and has a normal vectorn= (−sinα, cosα)T pointing into the flow field. A
point p= (x, y)T can be reflected from the physical area into a pointr z,α(p) in the area
beyond the boundary by

r z,α(p) = p− 2n(p− z)Tn. (6)

Introducing the reflection matrix

Rα =


1 0 0 0
0 cos(2α) sin(2α) 0
0 sin(2α) −cos(2α) 0
0 0 0 1

 , (7)

the flow fieldU(p, t) can be extrapolated from the pointp to the pointr z,α(p) with

U(r z,α(p), t) = RαU(p, t), (8)

such that the extrapolated solution fulfills the governing equations (cf. Fig. 1). This is
possible because for the velocity vectoru along the reflecting wall boundaryuTn = 0.

In Section 2 the new boundary treatment is described for the case of a reflecting boundary
in one dimension and some numerical results are given concerning the order of accuracy
and the conservation. In Section 3 the method is described for wall boundaries in two
dimensions with some numerical results.

2. ONE DIMENSION

In this section the boundary treatment is described for the one-dimensional Euler equa-
tions,

Ut + Fx = 0, (9)
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U =
 ρ

ρu
ρe

, F =
 ρu

ρu2+ p
u(ρe+ p)

, p = (γ − 1)

(
ρe− 1

2
ρu2

)
. (10)

For a discretization the real axis is divided into cells:

Ci = [xi , xi+1], xi = x0+ ih. (11)

In a finite-volume method the numerical solution at timetn is given by approximations of
the cell averages,

Un
i ≈

1

h

∫
Ci

U(x, tn) dx, (12)

whereU(x, tn) is the exact solution at timetn. These values are then integrated in time by

Un+1
i = Un

i +
1t

h

(
Fn

i − Fn
i+1

)
, (13)

whereFn
i are approximations of the exact time-averaged fluxes. A standard method for

the numerical calculation of the fluxesFn
i which is second-order accurate (and therefore

needs some limiters for the gradients) usually needs flow variables of the cellsCi−2,Ci−1,
Ci ,Ci+1 by a flux solver

Fn
i = F

(
Un

i−2,U
n
i−1,U

n
i ,U

n
i+1

)
. (14)

2.1. Description of the Boundary Treatment

Suppose there is a reflecting wall at the left-hand side of a flow field at the position
x = a, wherexiw < a < xiw+1 for a certainiw ∈Z. The grid cells (11) are divided into four
types as follows:Ciw−3,Ciw−4, . . . are empty cells;Ciw−2 andCiw−1 are ghost cells;Ciw is
a boundary cell andCiw+1,Ciw+2, . . . are regular cells (cf. Fig. 2). The reflection matrixR
in one dimension is given by

 ρ

−ρu
ρe

 = R

 ρ

ρu
ρe

, R =
1 0 0

0 −1 0
0 0 1

. (15)

FIG. 2. Definition of the different cells near a wall boundary.
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FIG. 3. Auxiliary cells for the calculation of the cell averages.

We define the following auxiliary cells (cf. Fig. 3):

C1
iw = [a, xiw+1], (16)

C2
iw = [xiw ,a], (17)(

C2
iw

)
r
= [a, 2a− xiw ], (18)

(Ciw−1)r = [2a− xiw , 2a− xiw−1], (19)

(Ciw−2)r = [2a− xiw−1, 2a− xiw−2]. (20)

Using the reflecting extrapolation of the flow beyond the boundary, a cell average of the
exact solution over the boundary cellCiw can be defined. LetUn

iw be an approximation for
this generalized cell average:

Un
iw ≈

1

h

(∫
C1

iw

U(x, tn) dx+
∫
(C2

iw
)
r

RU(x, tn) dx

)
. (21)

Given Un
iw ,U

n
iw+1,U

n
iw+2, . . . , the cell averages of the boundary cellCiw and the regu-

lar cellsCiw+1,Ciw+2, . . . at time tn, the fluxesFn
iw+2,F

n
iw+3, . . . can be calculated with a

4-point stencil flux solver (14). With these fluxes and the finite-volume method (13) the cell
averagesUn

iw+2,U
n
iw+3, . . . can be updated.

In order to advance the valuesUn
iw and Un

iw+1, however, the fluxesFn
iw and Fn

iw+1 are
needed. We want to calculate these two fluxes in the same way as the fluxes between regular
cells, i.e., with the same flux solver (14). Thus, ghost cell valuesŪn

iw−1, Ū
n
iw−2 must be

provided, where the bars signify ghost cell values. Given some approximationU∗(x, tn)
of the exact solutionU(x, tn), valuesŪn

iw−1, Ū
n
iw−2 can be obtained by the following cell

averages:

Ūn
iw−1 =

1

h

∫
(Ciw−1)r

RU∗(x, tn) dx, (22)

Ūn
iw−2 =

1

h

∫
(Ciw−2)r

RU∗(x, tn) dx. (23)
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For the approximate solutionU∗, we take the piece-wise constant step function. Now the
fluxesFn

iw+1 = F(Ūn
iw−1,U

n
iw ,U

n
iw+1,U

n
iw+2) andFn

iw = F(Ūn
iw−2, Ū

n
iw−1,U

n
iw ,U

n
iw+1) can

be calculated and the cell averagesUn
iw and Un

iw+1 can be advanced by a time step1t .
The conservative interpolation for the ghost cells is obtained by an overlapping of the
reflected ghost cells and the Cartesian-grid cells. Since these cells are of the same size, this
interpolation is linearity-preserving.

Remark 1. The calculation of the ghost cell values̄Un
iw−1 andŪn

iw−2 using a piece-wise
constant reconstruction forU∗ is equivalent to

Ūn
iw−1 = RU∗∗

(
2a−

(
xiw−1+ 1

2
h

)
, tn

)
, (24)

Ūn
iw−2 = RU∗∗

(
2a−

(
xiw−2+ 1

2
h

)
, tn

)
, (25)

whereU∗∗(x, tn) now is a piece-wise linear reconstruction obtained by linearly connecting
the cell averagesUn

i at the cell centersxi + 1
2h. Note that 2a − (xiw−1 + 1

2h) and 2a −
(xiw−2 + 1

2h) are the cell centers of the reflected cells(Ciw−1)r and(Ciw−2)r , respectively.
This form is useful for extensions of the boundary treatment to more than one dimension,
because it is simpler to evaluate a piece-wise linear function at some point than to integrate
a piece-wise constant function over a domain given by the intersection of cells.

As a finite-volume method our boundary treatment is written in conservation form. For
the method to be conservative, however, the flux along the boundary must be given by the
wall pressurepw as follows:

Fboundary=
 0

pw
0

. (26)

No mass, no energy, and no advected momentum flows into the domain. For the new
boundary treatment no flux at the wall boundary is calculated but at cell interfaces close to
the wall boundary. Thus, for wall boundaries not aligned with the grid interfaces, condition
(26) is only fulfilled approximately. LeVeque shows in [6, p. 123] how a nonconservative
method can lead to a wrong propagation speed of shock waves. Therefore, in the next section
a strong shock reflection off a solid wall is studied. It turns out that a proper reflection of
the shock is obtained.

2.2. Numerical Results

In this section numerical results of flows involving a reflecting wall boundary are shown.
The second-order accurate finite-volume method CLAWPACK [5] is used, with the approx-
imate Riemann-solver of Roe [11].

The first calculation shows a strong Mach 10.0 shock reflection with a shock wave starting
at x= 0.5 hitting a wall on the left and being reflected there. The discretization is given
by xi = ih,Ci = [xi , xi+1], whereh= 1/N is the grid parameter. The wall is located at
xw =αh, α ∈ [0, 1). Thus,C0 is a boundary cell. The initial data and the reflected state are
given in Fig. 4. For the first calculation (Fig. 5 on the left), the wall is situated atx= 0.0.
In this special case the boundary treatment is conservative. This result is compared with
a calculation where the wall is situated atx=αh, α= 0.8 (Fig. 5 on the right), where the
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FIG. 4. Strong shock reflection, exact solution.

boundary treatment is not conservative. For both calculations a Courant number ofcfl= 0.8
is used. The comparison shows that the reflected shock location comes out correctly. (The
loss in density close to the wall, which appears in both cases is related to the numerical wall
heating).

An analysis of the nonphysical mass production or loss for a timetn= 0.25 where the
shock wave has already been reflected at the wall but is still in the computational domain
gives

1mass= h

(
N−1∑
i=1

ρn
i + (1− α)ρn

0

)
−
∫ 1

αh
ρexact(x, tn) dx. (27)

FIG. 5. Density plot of a Mach 10 shock reflection with a wall located atx = 0.0 (left) and atx = 0.08 (right)
(circles denote the numerical solution, the solid line the exact solution).
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TABLE 1

Nonphysical Mass Production or Loss∆mass and the Resulting Error in

the Shock Location∆σ for a Mach 10 Reflection at Timet = 0.25

h 1mass 1σ α

h0 = 0.25 −0.7086 −0.0365 0.75

h0

2
−0.3598 −0.0185

.

.

.

h0

4
−0.1577 −0.0081

.

.

.

h0

8
−0.0867 −0.0045

.

.

.

h0

16
−0.0407 −0.0021

.

.

.

h0

32
−0.0202 −0.0010

.

.

.

α 1mass α 1mass h

0.0 0.0000 0.6 −0.0121
h0

32

0.1 −0.0141 0.7 −0.0177
.
.
.

0.2 −0.0238 0.8 −0.0225
.
.
.

0.3 −0.0236 0.9 −0.0168
.
.
.

0.4 −0.0174 1.0 0.0000
.
.
.

0.5 −0.0000
.
.
.

A change in the total mass results in an error of the shock location. Using the equal area
rule [6, p. 35] a numerical shock locationσ can be obtained. Subtracting from this the exact
shock location, the error in the shock location1σ can be obtained

1σ = 1mass

ρl − ρr
, (28)

whereρl , ρr are the densities of the exact solution on the left and on the right of the reflected
shock wave. Table 1 shows that for the Mach 10 shock reflection1mass—and therefore
1σ as well—are linear in the grid parameterh and that the method is conservative for the
special cases of a wall along a grid line or through the middle of a grid cell.

For one-dimensional calculations this nonphysical mass production or loss only happens
at the precise moment when the shock wave is reflected at the boundary. For the rest of the
time the solution will be smooth at the boundary and the mass production is then quadratic
in h as the global accuracy of the method for smooth flows (see below).

As a next test case, smooth initial data forx ∈ [0, 1] with solid wall boundary conditions
on both sides atx= 0.0 andx= 1.0 are taken such that the flow field stays smooth, at
least until timet = 1.0 (cf. Fig. 6). In this example the order of accuracy of the boundary
treatment is evaluated in an error analysis. We compare the higher-order boundary treatment
with a conservative first-order accurate boundary treatment (h-box method of Berger and
LeVeque [1]).
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FIG. 6. The smooth flow test calculation withh = 0.01.

We use a grid such that the first cellC0 is a boundary cell. With grid parameters
h= 1/n, n ∈ N, andα ∈ (0, 1) the grid is defined by

C0 = [αh− h, αh],

C1 = [αh, αh+ h],

C2 = [αh+ h, αh+ 2h],

...

For the calculation the Courant number is fixed and the initial data is advanced from time
t = 0.0 to time t = 1.0. Since the solution stays smooth for this time interval, limiting of
gradients is not necessary and second-order accuracy is expected also at the boundary.

The final densitiesρ0 andρ1 in the cellsC0 andC1 are approximate values for the density
at the pointsx= |α − 0.5|h andx= |α + 0.5|h, respectively. These two values, together
with (∂/∂x)ρ (x= 0), giveρwall, the wall density at timet = 1.0 by quadratic interpolation:

ρwall = ρ(x = 0) = ρ0
(
α + 1

2

)2− ρ1
(
α − 1

2

)2

2α
. (29)

Using linear interpolation, a final density valueρhalf at timet = 1.0 and atx= 0.5 is ob-
tained.

As the exact solution is not available in closed form, we calculate it with a fine grid of 1280
grid points. For this “exact” solution we obtainρwall = 1.0202003 andρhalf = 1.1031761.

The global accuracy is analyzed by looking at the convergence of the density variableρhalf.
The convergence history in Table 2 (top) for the density valuesρwall andρhalf for a grid with
α= 0.25 shows that using a first-order treatment of the boundary and a second-order method
elsewhere, the order of accuracy is still second-order in the whole domain, as predicted in
[13]. On the other hand, the convergence history in Table 2 (bottom) demonstrates that using
our higher-order boundary treatment, together with a second-order finite-volume method,
the convergence is of second order, not only for the whole domain, but also along the
boundary.
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TABLE 2

Convergence History for the Smooth One-Dimensional Test Example with the Conservative

h-Box Method (Top) and the New Nonconservative Boundary Treatment (Bottom)

h ρwall ρ half |1ρwall| Order |1ρ half| Order

h0 = 0.1 1.024664 1.096459 0.004430 0.006720

h0

2
1.022522 1.101377 0.002290 0.95 0.001800 1.91

h0

4
1.021261 1.102835 0.001030 1.15 0.000356 2.34

h0

8
1.020710 1.103084 0.000479 1.11 0.000092 1.95

h0

16
1.0204769 1.1031527 0.0002450 1.14 0.0000237 1.95

h0 = 0.1 1.035478 1.088415 0.015277 0.014760
h0

2
1.023884 1.100191 0.003683 2.05 0.002985 2.3

h0

4
1.021120 1.102493 0.000920 2.00 0.000683 2.13

h0

8
1.020432 1.103011 0.000232 1.99 0.000164 2.06

h0

16
1.0202562 1.1031362 0.0000558 2.06 0.0000399 2.04

3. TWO DIMENSIONS

Now we extend the method to handle reflecting wall boundaries in two dimensions. Still,
the boundary treatment is independent of the method for the regular cells as long as the
method can be written in conservation form (4).

3.1. Description of the Boundary Treatment

Without loss of generality, let us assume that in order to calculate the fluxFkl , the flow
variables of the cellsCk−2,l ,Ck−1,l ,Ck,l ,Ck+1,l are used by the flux solver:

Fn
kl = F

(
Un

k−2,l ,U
n
k−1,l ,U

n
kl ,U

n
k+1,l

)
. (30)

But the method can take into account the neighboring layers of grid cellsCk−2,l−1,Ck−1,l−1,
Ck,l−1,Ck+1,l−1 andCk−2,l+1,Ck−1,l+1, Ck,l+1,Ck+1,l+1.

The cells which are cut by the reflecting wall are denoted as cut cells. For each cut cell
the boundary of the object is approximated by a straight line. The other cells are either
regular or empty (cf. Fig. 7). The numerical solution for a regular cell at timetn is given by
an approximation of the cell average (3). To define a numerical solution for a boundary cell
Ckl , as well, let us first make some geometrical definitions.

The straight line which approximates the curved boundary in the boundary cellCkl

goes through a pointzkl and has a normal vectorn= (−sinαkl , cosαkl)
T pointing into the

computational domain (cf. Fig. 8). We divide the boundary cellCkl into two parts,C1
kl and

C2
kl , whereC1

kl is the part ofCkl lying in the computational domain andC2
kl is the remaining

part, such thatC1
kl ∪ C2

kl =Ckl (cf. Fig. 8). In (6) it is defined how to reflect a pointp at a
straight line through the pointz with normal vectorn= (−sinα, cosα)T . Analogously we
define the reflection of a polygonC with corner pointsp1, . . . ,pm as polygonrz,α(C) with
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FIG. 7. Discretization of a circle.

the reflected corner pointsr z,α(p1), . . . , r z,α(pm). If a polygon is reflected at the straight
boundary line going through the boundary cellCkl , the notation is simplified by

rkl(C) := rzkl ,αkl (C). (31)

Figure 9 shows the reflection ofC2
kl andCk+1,l ontorkl(C2

kl) andrkl(Ck+1,l ). The solution
near the boundary cellCkl can be extrapolated beyond the boundary using the reflection
matrixRαkl (7).

For a boundary cellCkl , the numerical solution at timetn is given by an approximation of
the cell average over the whole cell using the reflected extrapolation of the exact solution:

Un
kl ≈

1

h2

(∫
C1

kl

U(x, y, tn) dx dy+
∫

rkl (C2
kl )

Rαkl U(x, y, tn) dx dy

)
. (32)

With this definition, we can proceed as in one dimension. If an approximation of the
solution at timetn = t0 + n1t is given as a piece-wise constant function over the regular

FIG. 8. Description of the boundary segment through the cellCkl .
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FIG. 9. Reflection at the boundary segment of cellCkl .

and the boundary cells, this solution is advanced using (4). Suppose thel th horizontal layer
of grid cells consists of regular cellsCk−1,l ,Ck−2,l , . . . , of the boundary cellCkl , and of the
empty cellsCk+1,l ,Ck+2,l as in Fig. 9. With the 4-point stencil flux solver (30) theF-fluxes
Fk−1,l ,Fk−2,l , . . . , can be obtained andUk−2,l ,Uk−3,l , . . . , can be updated. But in order
to update alsoUk−1,l andUkl using (4) theF-fluxesFkl andFk+1,l are needed as well. To
calculate these two fluxes with the same stencil, ghost cell variablesŪk+1,l andŪk+2,l are
necessary. These variables are obtained as integrals over the reflected cells as

Ūn
k+1,l =

∫
rkl (Ck+1,l )

Rαkl U
∗(x, y, tn) dx dy,

(33)
Ūn

k+2,l =
∫

rkl (Ck+2,l )

Rαkl U
∗(x, y, tn) dx dy.

For the approximate solutionU∗(., ., tn), we take the piece-wise constant step function.
ThenFn

kl =F(Un
k−2,l ,U

n
k−1,l ,U

n
k,l , Ū

n
k+1,l ) andFn

k+1,l =F(Un
k−1,l ,U

n
k,l , Ū

n
k+1,l , Ū

n
k+2,l ) and

Un
kl and Un

k−1,l can be updated. As in one dimension the interpolation (33) is linearity-
preserving because it is obtained by overlapping the regular Cartesian-grid cells with equal-
sized reflected Cartesian-grid cells.

Remark 2. Equation (33) involves the evaluation of intersections of arbitrarily oriented
polygons, which is complicated to program. Reasonable and computationally simpler ghost
cell valuesŪn

k+1,l andŪn
k+2,l can be obtained by evaluating a piece-wise linear reconstruction

of the solution at the center of the reflected cells (cf. Remark 1),

Ūn
k+1,l = Rαkl U

∗∗
(

r zkl ,αkl

(
xk+1+ 1

2
h, yl + 1

2

)
, tn

)
,

(34)

Ūn
k+2,l = Rαkl U

∗∗
(

r zkl ,αkl

(
xk+2+ 1

2
h, yl + 1

2

)
, tn

)
,

whereU∗∗(x, y, tn) is a piece-wise linear reconstruction through the cell averagesUn
i j at

the nearest three Cartesian-grid cell centers. But (33) and (34) are not equivalent anymore
as they were in one dimension (cf. previous section), because the orientation of a reflected
cell is defined not only by its center but also by an angle. We prefer (34), however, since it is
simpler than using (33)—especially in three dimensions—and the results are qualitatively
the same, as well as with respect to the order of accuracy.
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FIG. 10. Discretization of an airfoil.

Remark 3. Some difficulties in the implementation can arise with thin geometry. If the
cellsCk+1,l andCk+2,l are empty cells next to a boundary cellCkl , for some cases one cannot
use their memory location to store the ghost cell valuesŪn

k+1,l andŪn
k+2,l . For example, if

the cellsCk−1,l andCkl are lying on the trailing edge of an airfoil as in Fig. 10. At the cell
interface between these two cells, two differentF-fluxesFkl have to be calculated,F1

kl for
theCk−1,l update andF2

kl for theCkl update. Using the 4-point stencil (30),

F1
kl = F

(
Un

k−2,l ,U
n
k−1,l , Ū

n
kl , Ū

n
k+1,l

)
, (35)

F2
kl = F

(
Ūn

k−2,l , Ū
n
k−1,l ,U

n
kl ,U

n
k+1,l

)
, (36)

whereUn
k−2,l , . . . ,U

n
k+1,l are the values of the regular or boundary cells andŪn

k−2,l , . . . , Ū
n
k+1,l

are the ghost cell values. Thus,Ūn
k−2,l , . . . , Ū

n
k+1,l need separate memory locations orCk−1,l

andCkl need to change the values between updatingUn
k−1,l andUn

kl . Analogously, if the
trailing edge of the airfoil divides a cell into two parts, the so-called “split-cell” problem,
two different values of the solution corresponding to a weighted mean on each side of the
airfoil have to be maintained.

3.2. Numerical Results

For the following numerical examples the CLAWPACK package of LeVeque [5] is used
as the underlying method for the regular cells. At the domain boundaries standard super- and
subsonic in- and outflow techniques are used. For all calculations except the one involving
the cylinder, ghost cell values are obtained by method (34).

In the first and second examples the geometry is given by a circular cylinder. First an
incident shock wave reflects off a cylinder. For this example the mass nonconservation
is analyzed. The second example is a subcritical Mach 0.38 inflow presented at a GAMM
workshop [3]. The next example is a flow over a ramp, an example introduced by Woodward
and Colella resulting in a double Mach reflection [14]. Next, a transonic flow around a
NACA0012 airfoil described also in [3] is calculated. However, for this example Cartesian
grids are not appropriate because of the smallness of the airfoil compared to the size of the
computational domain necessary to obtain reliable results. The last example is a calculation
of a Prandtl–Meyer expansion. As in [1, 9], with this example the order of accuracy of the
method can be measured numerically.
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FIG. 11. Shock wave reflecting off a cylinder at timetn = 0.15 (left), subcritical flow around a cylinder with
Mach 0.38 (right).

In the first example the reflection off a cylinder of an incident shock wave traveling at
a relative Mach number 3.0 is studied. The computational domain is the unit square. The
cylinder is located in the middle of the domain and has a radius of 0.2. The initial shock
location is just in front of the cylinder. The Courant number (cfl= 0.9. Figure 11 on the
left shows density contours for a calculation with a 300× 300 grid at timetn= 0.15. As
in one dimension, we make an analysis of the nonphysical mass production or loss. For
time tn= 0.15 such that the shock wave is still in the computational domain, the total mass
generation is

1mass=
∑

i j

∣∣C1
i j

∣∣(ρn
i j − ρ0

i j

)− vS(ρl − ρr )tn, (37)

where it is summed over the regular and boundary cells and|C1
i j | denotes the area of the

cell Ci j lying in the computational domain.vS is the shock speed and(ρl − ρr ) is the jump
of density across the shock wave. Table 3 shows the relative mass production for different
grids. The conservation is violated linearly in the grid spacing.

For the second example a circular cylinder with radius 0.5 is placed in the middle of a
square with length 10.0. A subcritical Mach 0.38 inflow is studied on a 400× 400 grid.

TABLE 3

Nonphysical Relative Mass Production for a Shock

Reflection Off a Cylinder at Time tn = 0.15

Grid
1mass

mass

100× 100 0.0216
200× 200 0.0140
400× 400 0.0088
800× 800 0.0045
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The grid cells have a length of 1/40 = 0.025 such that the results can be compared with
methods using a 128×32 O-mesh, where the cells of the first layer around the cylinder have
a length ofπ/128= 0.0245. The initial condition is a constant flow and the steady state is
reached after a sufficiently large time. Figure 11 on the right shows the density contours at
steady state. The maximum values for the entropy deviation,6 = (p/p∞)/(ρ/ρ∞)γ − 1,
is6max= 0.0038 and for the Mach number isMmax= 0.9094, which compares well with
results using O-meshes, for example6max = 0.0048 in [8]. For a 200× 200 grid a value
6max= 0.0098 is obtained, which demonstrates the higher-order accuracy of the boundary
treatment, since the entropy deviation here is a boundary effect.

The next example was introduced in [14] to compare different numerical schemes. It is
a reflection of a Mach 10 shock wave at a ramp. The resulting configuration of a double
Mach reflection contains several fluid dynamical features, such as a moving shock wave,
a quasi-steady-state shock wave, a contact discontinuity, and two reflected shock waves.
This example with tilting the reflecting wall needs a boundary treatment to model the
reflecting boundary oblique to the grid. In [14] the incident shock wave is tilted, instead.
In the computation1x=1y= 1/120, the angle of the ramp is 30◦ and for the gas at rest
p= 1.0, ρ= 1.4 as in [14] to compare the results. The Mach 10 shock wave starts a few
layers of grid cells in front of the origin of the ramp and the computation is stopped at time
t = 0.2. In Fig. 12 the results are shown using a 300× 240 grid. The results compare well

FIG. 12. Reflection of a Mach 10 shock wave at a 30◦ angle at timet = 0.2 using a grid with1x = 1y =
1/120.
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FIG. 13. Grid and pressure contours for a calculation of a Mach 0.8 flow around a NACA0012 airfoil with a
1.25◦ angle of attack,1x=1y= 1/50.

with [14]. It is very encouraging that the first reflected shock wave does not appear smeared
as it hits the boundary.

Our next example is of more practical importance, namely, a transonic steady-state flow
around a NACA0012 airfoil. The geometry is described in [3]. As asymptotic conditions,
the free-stream Mach numberM∞= 0.8 and the angle of attackα∞= 1.25◦ are chosen. For
the in- and outflow condition we use a far-field correction following the ideas of Thomas
and Salas [12].

The 400× 400 Cartesian grid has a side length of 8 chords and the airfoil is placed at a
distance of 3 chords from the inflow boundary. Our Cartesian grid has1x = 1y= 1/50,
resulting in about 100 grid cells surrounding the airfoil. No refinement of the grid at the
leading edge is used. Thus, we cannot expect that our results can compete with [12].
Figure 13 shows details of the grid and of aCp contour plot, whereCp = (p− p∞)/( 1

2ρ∞u2
∞).

The pressureCp and the entropy deviation6 along the airfoil surface are shown in Fig. 14,
where cell-centered boundary values are plotted. The forces on the airfoil are given in the
nondimensionalized drag and lift coefficients,

cd = 2

ρ∞u2∞L

∮
(ρuuTn+ pnx) dS, (38)

FIG. 14. Distribution of pressure and entropy deviation around the surface of the airfoil.
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FIG. 15. Expansion of a Mach 1.83 flow over a 35◦ bend,h = 1x = 1y = 1/200.

cl = 2

ρ∞u2∞L

∮
(ρvuTn+ pny) dS, (39)

whereL is the chord length of the airfoil and the integration goes along an arbitrary closed
contourSenclosing the airfoil with outward-facing normal vectorn= (nx, ny)T . Our results
yield cd= 0.0205 andcl = 0.3118, compared withcd= 0.0226 andcl = 0.358 of [12],
where a 256×64 O-mesh and a domain size of 200 chords is used. As can be seen in Fig. 14
on the right, the numerical entropy production at the leading edge of the airfoil is of the
order of the physical entropy production across the shock wave on the upper surface in our
calculation. Thus, to get better results for this example the grid should be refined there.

The last example is a steady-state calculation of a Prandtl–Meyer expansion for a Mach
1.83 flow over a 35◦ bend. The exact solution is a smooth flow with constant entropy
S= p/ργ and constant stagnation enthalpyH = (p + ρe)/ρ. Figure 15 shows a density
contour plot of a calculation with a 200× 200 grid. As introduced by Berger and LeVeque,
this example can be used to analyze the order of accuracy of the method by taking the
L1-norm of the error in entropy and stagnation enthalpy in the whole flow area or only
along the boundary (cf. [1, 9]):

errortotal =
∑1 ∣∣ui j − uc

i j

∣∣∑1 1
, (40)

errorboundary=
∑2 ∣∣ui j − uc

i j

∣∣∑2 1
, (41)

whereuc
i j is the exact solution (here entropy or stagnation enthalpy),ui j is the numerical so-

lution,
∑1 is a summation over all grid cells, and

∑2 is a summation over the boundary cells
only. Under the assumption that the error can be expressed as error= Chp, the orderp of the
method can be obtained numerically in the whole area or only along the boundary. Table 4
shows two convergence histories. For the first one, Table 4 (top), a first-order boundary
treatment is used. Our first-order boundary method is given by the new boundary treatment
without the second-order correction terms in the flux calculation along the interface of
boundary cells and ghost cells. The second one, Table 4 (bottom), uses the higher-order
boundary treatment. The results for entropy suggest that the method is of second-order
accuracy in the whole area for both the first- and the second-order boundary treatment;
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TABLE 4

Convergence History for the Prandtl–Meyer Expansion, First-Order Boundary

Treatment (Top) and Higher-Order Boundary Treatment (Bottom)

Entropy Stagnation enthalpy

h Errortotal Order Errortotal Order

1

200
0.0013671 — 0.019595 —

1

400
0.0003556 1.94 0.008849 1.15

1

700
0.00011875 1.96 0.0049026 1.06

Errorboundary Errorboundary

1

200
0.020652 — 0.201197 —

1

400
0.008769 1.24 0.164443 0.29

1

700
0.004372 1.24 0.148709 0.18

Errortotal Errortotal

1

200
0.0007390 — 0.004332 —

1

400
0.0001849 2.00 0.001758 1.30

1

700
0.00005895 2.04 0.0008545 1.29

Errorboundary Errorboundary

1

200
0.009998 — 0.033900 —

1

400
0.003786 1.40 0.018621 0.87

1

700
0.001688 1.48 0.016400 0.23

i.e., the order in the whole domain is not affected by a lower order boundary treatment
(cf. [13]). But the order of accuracy along the boundary is better using the higher-order
boundary treatment, and the value ofp= 1.48 for the order in entropy along the boundary
is an improvement, compared with other Cartesian-grid methods, e.g., [9], wherep= 1.2
is obtained, or [2], wherep= 1.4 is obtained, using a code for the steady-state Euler equa-
tions. The results for stagnation enthalpy are less satisfying, but neither in this paper nor in
[9] can an explanation for this can be given.

4. CONCLUSIONS

For Cartesian-grid methods for the Euler equations, a boundary treatment is given based
on reflecting locally the flow field at a straight boundary line. The method is higher-order
accurate, simple, and applicable to any finite-volume method.

Numerical results in one dimension show that second-order accuracy is obtained for
smooth flows also at the boundary. Despite the violation of the conservation at the boundary,
correct shock reflections off the boundary in one dimension are obtained within first-order
accuracy.
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In two dimensions we have shown that the numerical entropy production along the bound-
ary of a circular cylinder is comparable to other time-dependent methods using body-fitted
grids. For a shock reflection off a cylinder it is shown that the violation of the conservation is
of order one in the grid spacingh and that this violation does not lead to spurious solutions.
Shock smearing at the boundary is shown to be negligible for a shock wave traveling along
the boundary oblique to the grid in the case of a double Mach reflection off a ramp. For
the calculation of a transonic flow past a NACA0012 airfoil, the accuracy of the drag and
lift coefficients is limited, due to the high curvature of the boundary at the leading edge of
the airfoil. By means of a smooth steady-state flow calculation, the order of accuracy of
the method in the whole domain and along the boundary is measured analytically. In the
whole domain the method is second order and along the boundary we obtain an order of
1.48 which is an improvement compared with other boundary treatments.

In future research the accuracy of the two-dimensional method may be further improved
by taking into account the curvature of the wall boundary or by improving the way ghost cell
values are obtained. Also for some examples the loss of conservation could be a problem,
where we would have to look for techniques to fix the conservation.
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