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The Euler equations describe the flow phenomena of compressible inviscid gas
dynamics. We simulate such flows using a higher-order Cartesian-grid method,
together with a special treatment for the cells cut by the boundary of an object.
A new method for the treatment of the boundary is described where these cut bound-
ary cells are maintained as whole cells rather than as cut cells, thus avoiding stability
problems. The method is second-order accurate in one dimension and higher-order
accurate in two dimensions but not strictly conservative; however, we show that this
error in the conservation does not lead to spurious phenomena on some represen-
tative test calculations. The advantages of the new boundary treatment are that it
is higher-order accurate, that it is independent of the applied method, and that it is
simple.  © 1998 Academic Press

Key Wordsfinite-volume schemes; hyperbolic conservation laws; boundary treat-
ment; CLAWPACK package; Euler equations.

1. INTRODUCTION

A Cartesian-grid method consists of a standard method for the regular cells and a sp
treatment for the boundary cells. Cartesian-grid methods can take full advantage of
computer architectures like vector or parallel computers. Cartesian-grid methods are f
ble, i.e., they can be used for flow simulations around complex geometries. In the litera
Cartesian-grid methods with different approaches for the boundary treatment can be fc
which are of first order. Berger and LeVeque [1] use rotated boxes to get stability, Cole
[9] uses flux-redistribution procedures, and Quirk [10] uses merging procedures. The n
problem is to avoid instability arising from small boundary cells and to achieve a hi
order of accuracy along the boundary. In [4] we presented such a scheme. In this p
a new method for the boundary treatment is given which is stable, higher-order accu
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260 FORRER AND JELTSCH

and simpler than the one given in [4]. Above all it is easy to extend this new approact
three-dimensional calculations.
The compressible inviscid flow in two dimensions is described by the Euler equation

U +Fx +Gy =0, Q)
p pu PV
2
u=|"M], F=| PP = P |,
pvU puv oV + p
pe u(pe+ p) v(pe+ p)

1
p=(y -1 (pE— E/O(U2 + vz)),

wherep is the mass density, v) T is the velocity vectorpe is the energy density is the
pressure, angt =1.4.

It is a system of nonlinear hyperbolic equations. Thus, one has to use a method wi|
is able to treat shock waves. Liebe a grid parameter and set= xo +ih, y; = Yo+ jh,
i, j € Z. The regular Cartesian grid céli; is then given by

Cij = [%i, Xi1] < [V}, Yj+1l- (2

The numerical solution at timfg is given by approximations of the cell averages of the
exact solutiorJ(x, y, t,) over the grid cells:

1
h= Je,

An integration of Eq. (1) over the celljj yields a method to advance these approximation

U7l to a new approximate solutiddf|** at timet,,1 = t, + At,

At
Ui = Uj + + (B} = Flhaj + Gl = Glj1a), (4)

where the fluxesj, Gi; (Fi; is the flux between the cellS;_1 j andC;j, andG;; is the
flux between the cell€; j_; andC;;) are given by the numerical method.

One method to calculate the fluxeg, Gi; is LeVeque’s multidimensional method [7]
which is of second-order accuracy and stable up to a Courant nuifibel.O, because it
takes into account transverse fluxes. The Courant number is defined by

At VUmax

fl =
c ho

®)
where vmax IS the maximum characteristic speed occurring in the solution. This shoc
capturing scheme is used for the numerical experiments.

If an object is put into a Cartesian grid, then a special treatment of the cells cut by
boundary of the object is necessary. Pengbai.[9] give a method which makes it possible
to treat these boundary cells like regular cells, thus avoiding instability problems for sir
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FIG. 1. Symmetry line of a wall boundary for an inviscid flow.

cut cells. The method is first-order accurate along the boundary. Our new method also t
boundary cells as whole cells but is of higher-order accuracy along the boundary.

The new approach is motivated by the fact that for an inviscid flow a straight reflecting v
boundary behaves like a symmetry line. Suppose the straight boundary line goes thr
the pointz and has a normal vector= (—sina, cosa)™ pointing into the flow field. A
pointp=(x, y)" can be reflected from the physical area into a pojpt(p) in the area
beyond the boundary by

(P =p—2n(p-2Tn. (6)

Introducing the reflection matrix

1 0 0 0
e [§ ez s o)
0 0 0 1
the flow fieldU(p, t) can be extrapolated from the pomto the pointr,, (p) with
U(rze (), t) = R,U(p, 1), (8)

such that the extrapolated solution fulfills the governing equations (cf. Fig. 1). This
possible because for the velocity vectoalong the reflecting wall boundany/ n = 0.

In Section 2 the new boundary treatment is described for the case of a reflecting boun
in one dimension and some numerical results are given concerning the order of acct
and the conservation. In Section 3 the method is described for wall boundaries in
dimensions with some numerical results.

2. ONE DIMENSION

In this section the boundary treatment is described for the one-dimensional Euler e
tions,

Ui+ Fx =0, 9
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o pu 1
U=|pu], F=| pu+p [, p=(7/—1)(pe—zpu2>~ (10)
pe u(pe+ p)

For a discretization the real axis is divided into cells:
Ci =[X,Xiq1], X =Xo+ih. (11)

In a finite-volume method the numerical solution at titpés given by approximations of
the cell averages,

1
Ul ~ h /C U(x, ty) dx, 12)

whereU(x, tp) is the exact solution at timig. These values are then integrated in time by

At

UMt = Ui+

(Fin - Fin+1)’ (13)
whereF' are approximations of the exact time-averaged fluxes. A standard method
the numerical calculation of the fluxé% which is second-order accurate (and therefore
needs some limiters for the gradients) usually needs flow variables of th€cellC; 1,

Ci, Ci 1 by a flux solver

Fl =7 (U, ULy, U Ul). (14)

2.1. Description of the Boundary Treatment

Suppose there is a reflecting wall at the left-hand side of a flow field at the positi
X = a, wherex;, < a < X;,+1 for a certain,, € Z. The grid cells (11) are divided into four
types as followsC;, _3, Ci, _a, ... are empty cellsC;, _» andC;,_; are ghost cellsC;, is
a boundary cell an@;, 11, Ci 42, ... are regular cells (cf. Fig. 2). The reflection matRx
in one dimension is given by

P ol 1 0 O
—pu | =R|pu), R=|0 -1 0]. (15)
pe pe 0 0 1
empty cells ghost cells boundary cell regular cells
P AN " e E A
p Xt e T T I | L L x
I I I I I ll;'u, + '-jci“-+1 T T T
C‘-w 1 C'.'w Sl

FIG. 2. Definition of the different cells near a wall boundary.
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Ciy-2 ! Ciy-1 | Ciy, o | Ciytr | Ciu2

{(Cl e ¢ (Ciw—1)r ' (Ciy-a)e

FIG. 3. Auxiliary cells for the calculation of the cell averages.

We define the following auxiliary cells (cf. Fig. 3):

Cl =[a xi, ), (16)

C2 =[x,,.al, (17)
(C?), =[a.2a—x,], (18)
(Ci,—1r =[2a—X;,,2a— X, _1], (19)
(Ci,—2)r =[2a— Xj,-1,2a — X, _2]. (20)

Using the reflecting extrapolation of the flow beyond the boundary, a cell average of
exact solution over the boundary c€}l, can be defined. Lay]! be an approximation for
this generalized cell average:

1
U ~ h (/ U(x, tn)dx+/ RU(x, t,) dx). (21)
Cl, C)

tw’r

Given U .U ., Ul ,,..., the cell averages of the boundary c€ll, and the regu-
lar cellsCi, 11, Ciu,+2; ... at timety, the fluxesF! ., F! ,5, ... can be calculated with a
4-point stencil flux solver (14). With these fluxes and the finite-volume method (13) the ¢
averaged)! .,, Ul |5, ... can be updated.

In order to advance the valué' andU} ., however, the fluxe§! andF ., are
needed. We want to calculate these two fluxes in the same way as the fluxes between re
cells, i.e., with the same flux solver (14). Thus, ghost cell valugs,, U _, must be
provided, where the bars signify ghost cell values. Given some approximation t,)
of the exact solutiotJ(x, tn), valuesU _;, Ul' _, can be obtained by the following cell

averages:

— 1
u' == / RU*(x, t,) dx, (22)
h Jc, o

— 1
u' , == / RU*(x, t,) dx. (23)
" h (Ciyy—2)r
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For the approximate solutidd*, we take the piece-wise constant step function. Now th:
fluxesF ., = FU! _, U, UL 1 U ) andF! = FU] 5, U U U L) can

be calculated and the cell averadé$ and U} ,; can be advanced by a time sté.
The conservative interpolation for the ghost cells is obtained by an overlapping of 1
reflected ghost cells and the Cartesian-grid cells. Since these cells are of the same size
interpolation is linearity-preserving.

Remark 1. The calculation of the ghost cell valulal_%,l andL_J{‘u,,2 using a piece-wise
constant reconstruction f&#* is equivalent to

- 1
Uf, -1 =RU™ (23 - (Xiw—l + §h> : tn>, (24)
N . 1
Uim72 = RU 2a - Xi“772 + Eh ? tn 2 (25)

whereU**(x, t,) now is a piece-wise linear reconstruction obtained by linearly connectir
the cell averageb)]' at the cell centers; + %h. Note that 2 — (xi,—1 + %h) and & —
X, —2 + %h) are the cell centers of the reflected cé€(l, _1), and(C;,_2),, respectively.
This form is useful for extensions of the boundary treatment to more than one dimens;i
because it is simpler to evaluate a piece-wise linear function at some point than to integ
a piece-wise constant function over a domain given by the intersection of cells.

As a finite-volume method our boundary treatment is written in conservation form. F
the method to be conservative, however, the flux along the boundary must be given by
wall pressurep,, as follows:

0

I:boundary= Pw |- (26)
0

No mass, no energy, and no advected momentum flows into the domain. For the |
boundary treatment no flux at the wall boundary is calculated but at cell interfaces clos
the wall boundary. Thus, for wall boundaries not aligned with the grid interfaces, conditi
(26) is only fulfilled approximately. LeVeque shows in [6, p. 123] how a honconservati
method can lead to a wrong propagation speed of shock waves. Therefore, in the next se
a strong shock reflection off a solid wall is studied. It turns out that a proper reflection
the shock is obtained.

2.2. Numerical Results

In this section numerical results of flows involving a reflecting wall boundary are show
The second-order accurate finite-volume method CLAWPACK [5] is used, with the apprc
imate Riemann-solver of Roe [11].

The first calculation shows a strong Mach 10.0 shock reflection with a shock wave star
at x = 0.5 hitting a wall on the left and being reflected there. The discretization is give
by xi =ih, C; =[x, Xi+1], whereh=1/N is the grid parameter. The wall is located at
X, =ah, @ € [0, 1). Thus,Cy is a boundary cell. The initial data and the reflected state al
given in Fig. 4. For the first calculation (Fig. 5 on the left), the wall is situated-a0.0.

In this special case the boundary treatment is conservative. This result is compared
a calculation where the wall is situatedxat «h, « = 0.8 (Fig. 5 on the right), where the
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wall p 14 t = 0, initial data
pu = 0.0
2.5
pe /p\ / 8.0
pu | = =660
- pe ). 563.5
: z
0.5
(after reflection)
p 2741176\
pu = 0.0
pe /, 2213.5
, x
0.5

FIG. 4. Strong shock reflection, exact solution.

boundary treatment is not conservative. For both calculations a Courant nunclet 6f8
is used. The comparison shows that the reflected shock location comes out correctly.
loss in density close to the wall, which appears in both cases is related to the numerical
heating).

An analysis of the nonphysical mass production or loss for a tjme0.25 where the
shock wave has already been reflected at the wall but is still in the computational dor
gives

N-—-1 1
_ n n
Amass= h E i +A—a)py | — / PexactX, th) dX. 27)
i—1 ah
1=0.0 1=0.034 1=0.0 1=0.034
20 20 20 20
0 o F Lol
0 0 K;
() 05 1 0 05 10 05 1 0 05 1
1=0.071 =00 [ 1=0.071 1=0.107
20 20 2 °—;‘ 200 ©
o
0 0 0
(] 05 1 () 05 10 0.5 1 (] 05 1
1=0.143 1=0.174 1=0.143 1=0.174
[ i q
20 20 20 20
o o
0
o 0.5 1 0 05 10 05 1 % 05 1
1=0.214 1=0.25 1=0.214 1=0.25
O] 0 [=]
20 J[ 20 20 D{ 20 °
0 0
0 05 1 0 05 10 05 1 () 0.5 1

FIG.5. Density plot of a Mach 10 shock reflection with a wall located at 0.0 (left) and atx = 0.08 (right)
(circles denote the numerical solution, the solid line the exact solution).
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TABLE 1
Nonphysical Mass Production or LossAmass and the Resulting Error in
the Shock Location Ao for a Mach 10 Reflection at Timet = 0.25

h Amass Ao a
hy = 0.25 —0.7086 —0.0365 0.75

% —0.3598 —0.0185

% —0.1577 —0.0081

% —0.0867 —0.0045

ho

— —0.0407 —0.0021

16

ho

— —0.0202 —0.0010

32
o Amass o Amass h

ho
0.0 0.0000 0.6 —0.0121 —
32

0.1 ~0.0141 0.7 ~0.0177 :
0.2 —0.0238 0.8 —0.0225
0.3 —0.0236 0.9 —0.0168
0.4 —0.0174 1.0 0.0000
0.5 —0.0000

A change in the total mass results in an error of the shock location. Using the equal ¢
rule [6, p. 35] a numerical shock locatiencan be obtained. Subtracting from this the exac
shock location, the error in the shock locatida can be obtained

_ Amass
o= pr

o (28)
wherep;, p; are the densities of the exact solution on the left and on the right of the reflect
shock wave. Table 1 shows that for the Mach 10 shock refledtioass—and therefore
Ao as well—are linear in the grid parameteand that the method is conservative for the
special cases of a wall along a grid line or through the middle of a grid cell.

For one-dimensional calculations this nonphysical mass production or loss only hapg
at the precise moment when the shock wave is reflected at the boundary. For the rest c
time the solution will be smooth at the boundary and the mass production is then quadr
in h as the global accuracy of the method for smooth flows (see below).

As a next test case, smooth initial datafoe [0, 1] with solid wall boundary conditions
on both sides ak=0.0 andx = 1.0 are taken such that the flow field stays smooth, &
least until timet = 1.0 (cf. Fig. 6). In this example the order of accuracy of the boundar
treatment is evaluated in an error analysis. We compare the higher-order boundary treat
with a conservative first-order accurate boundary treatment (h-box method of Berger
LeVeque [1]).
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Density at time t = 0 Velocity at time t = 0 Density at time t=1 Velocity at time t = 1
2
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02 02
1 o 1—’”’—\ N
—o.z\/ -0.2
0.5 -0.4 05 -0.4
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02 04 06 08 1 02 04 06 08 1 02 04 06 08 1 02 04 06 08 t

Pressure attime t=0 Temperature at time t =0 Pressure attime t=1 Temperature attime t = 1
2 2

— 1T 11
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0.5 . o
02 04 06 08 1 02 04 06 08 105 02 04 06 08 1 02 04 06 08 1

FIG. 6. The smooth flow test calculation with= 0.01.

We use a grid such that the first c&lb is a boundary cell. With grid parameters
h=1/n,n € N, anda € (0, 1) the grid is defined by

Co = [ah — h, ah],
Cy = [ah,ah +h],
C, = [ah + h, ah + 2h],

For the calculation the Courant number is fixed and the initial data is advanced from t
t=0.0 to timet =1.0. Since the solution stays smooth for this time interval, limiting ©
gradients is not necessary and second-order accuracy is expected also at the bounda
The final densitiegg andp; in the cellsCy andC; are approximate values for the density
at the pointsx = |« — 0.5/h andx = |« + 0.5|h, respectively. These two values, togethe
with (8/9x)p (x =0), give pwail, the wall density at timé= 1.0 by quadratic interpolation:

pole+3)° = pr(e—1)°
2u '

pwall = p(X = 0) = (29)

Using linear interpolation, a final density valpga at timet =1.0 and atx =0.5 is ob-
tained.
As the exact solution is not available in closed form, we calculate it with a fine grid of 12
grid points. For this “exact” solution we obtaj, = 1.0202003 anghpq; = 1.1031761.
The global accuracy is analyzed by looking at the convergence of the density vaggble
The convergence history in Table 2 (top) for the density valuggandpnqs for a grid with
o = 0.25 shows that using a first-order treatment of the boundary and a second-order me
elsewhere, the order of accuracy is still second-order in the whole domain, as predict:
[13]. Onthe other hand, the convergence history in Table 2 (bottom) demonstrates that
our higher-order boundary treatment, together with a second-order finite-volume metl
the convergence is of second order, not only for the whole domain, but also along
boundary.



268 FORRER AND JELTSCH

TABLE 2
Convergence History for the Smooth One-Dimensional Test Example with the Conservative
h-Box Method (Top) and the New Nonconservative Boundary Treatment (Bottom)

h Puwall P hait [Apwail Order | AP pal Order
hy = 0.1 1.024664 1.096459 0.004430 0.006720
% 1.022522 1.101377 0.002290 0.95 0.001800 1.91
% 1.021261 1.102835 0.001030 1.15 0.000356 2.34
% 1.020710 1.103084 0.000479 1.11 0.000092 1.95
;'—g 1.0204769 1.1031527 0.0002450 1.14 0.0000237 1.95
hy = 0.1 1.035478 1.088415 0.015277 0.014760
% 1.023884 1.100191 0.003683 2.05 0.002985 2.3
% 1.021120 1.102493 0.000920 2.00 0.000683 2.13
% 1.020432 1.103011 0.000232 1.99 0.000164 2.06
% 1.0202562 1.1031362 0.0000558 2.06 0.0000399 2.04

3. TWO DIMENSIONS

Now we extend the method to handle reflecting wall boundaries in two dimensions. S
the boundary treatment is independent of the method for the regular cells as long as
method can be written in conservation form (4).

3.1. Description of the Boundary Treatment

Without loss of generality, let us assume that in order to calculate thé&§|uxhe flow
variables of the cell€y_2, Cx_1, Ck,, Ck+1, are used by the flux solver:

W= ]:(Uﬂfz,h Uﬂfl,lv Ug, UE+1,|)' (30)

But the method can take into account the neighboring layers of grid@ells _1, Cx_1,1-1,
Cii-1, Ckrai—1andCy 241, Cr-1141, Cig1s Crrnl1

The cells which are cut by the reflecting wall are denoted as cut cells. For each cut
the boundary of the object is approximated by a straight line. The other cells are eit
regular or empty (cf. Fig. 7). The numerical solution for a regular cell at tinegiven by
an approximation of the cell average (3). To define a numerical solution for a boundary
Cui, as well, let us first make some geometrical definitions.

The straight line which approximates the curved boundary in the boundarZgell
goes through a poird and has a normal vector= (—sinay, Cosay)" pointing into the
computational domain (cf. Fig. 8). We divide the boundary €gllinto two partsC} and
CZ, whereC}, is the part ofCy lying in the computational domain ai@, is the remaining
part, such tha€}, U C2 = Cy (cf. Fig. 8). In (6) it is defined how to reflect a poiptat a
straight line through the poimtwith normal vecton = (—sina, cosa)T. Analogously we
define the reflection of a polygdd with corner pointgs, . .., pm as polygorr,,(C) with
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[ I:I regular cells

\\ I:I boundary cells
\ . empty cells

|t

FIG. 7. Discretization of a circle.

the reflected corner points ,(p1), - .., rz«(Pm). If @ polygon is reflected at the straight
boundary line going through the boundary ¢&j|, the notation is simplified by

ki (C) = erl»OtkI (C) (31)

Figure 9 shows the reflection Gﬁl andCy.1, ontory (CE,) andry (Cy+1.1). The solution
near the boundary ceCy can be extrapolated beyond the boundary using the reflecti
matrix Ry, (7).

For a boundary cefCy,, the numerical solution at tintg is given by an approximation of
the cell average over the whole cell using the reflected extrapolation of the exact solut

1
Up ~ 2 </1 U(X, y, th) dx dy+/ , Ry U(X, Y, tn) dX dy). (32)
Ca ra(Cg)

With this definition, we can proceed as in one dimension. If an approximation of |
solution at timet, = tp + nAt is given as a piece-wise constant function over the regul

e Ch
& — — Ci
object
e boundary

FIG. 8. Description of the boundary segment through the Cgll
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i Y < e Temm— T“{C"k-'—]lf)
\/ T R 1 (o)
J object

i

2k / * boundary

FIG. 9. Reflection at the boundary segment of ¢&ll.

and the boundary cells, this solution is advanced using (4). Suppoldh tiwizontal layer
of grid cells consists of regular cel-_1, Ck-2y, - . ., Of the boundary celCy, and of the
empty cellCy1.1, Cki21 as in Fig. 9. With the 4-point stencil flux solver (30) thdluxes
Fk—11, Fk_21, ..., can be obtained andy_»,, Ux_3,, ... , can be updated. But in order
to update alsdJy_1; andUy using (4) theF-fluxesFy andFy, 1, are needed as well. To
calculate these two fluxes with the same stencil, ghost cell varialples andUy,,, are
necessary. These variables are obtained as integrals over the reflected cells as

GE-&-l,l = / Rde*(Xs Yy, th) dx dy,

Tk (Ckt11) (33)

ljE-&-ZI = / Rozk|U*(Xa Y, th) dx dy
. Tk (Ckt21)

For the approximate solutiod*(., ., t,), we take the piece-wise constant step function
ThenFy = F(UR 5. UR_y. Uk, Uiiyy) andF = F(UR_y L UR)L Uy Uk and
Ug andUg_,;, can be updated. As in one dimension the interpolation (33) is linearit
preserving because it is obtained by overlapping the regular Cartesian-grid cells with eq
sized reflected Cartesian-grid cells.

Remark 2. Equation (33) involves the evaluation of intersections of arbitrarily oriente
polygons, which is complicated to program. Reasonable and computationally simpler gl
cell valuesﬁﬂ 1 andUE 2, can be obtained by evaluating a piece-wise linear reconstructic
of the solution at the center of the reflected cells (cf. Remark 1),

— 1 1
E+l,| = Rotk|U** <r2k|,0tk| (Xk+l + Eh» i+ 5) , tn) s

N *% 1 1
k+2, = Rey U M 2,00 | Xk2 + éhv i+ E I ),

whereU™(x, y, tn) is a piece-wise linear reconstruction through the cell averaijeat
the nearest three Cartesian-grid cell centers. But (33) and (34) are not equivalent anyi
as they were in one dimension (cf. previous section), because the orientation of a refle
cell is defined not only by its center but also by an angle. We prefer (34), however, since
simpler than using (33)—especially in three dimensions—and the results are qualitati\
the same, as well as with respect to the order of accuracy.

(34)
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W

iy,

FIG. 10. Discretization of an airfoil.

Remark 3. Some difficulties in the implementation can arise with thin geometry. If tf
cellsCy,1, andCy, 2, are empty cells nextto a boundary ¢eli, for some cases one cannot
use their memory location to store the ghost cell valugs | andUg_, . For example, if
the cellsCy_1; andCy, are lying on the trailing edge of an airfoil as in Fig. 10. At the cel
interface between these two cells, two differerAluxesF,, have to be calculatetﬁ,&, for
theCy_1, update andr2 for the Cy update. Using the 4-point stencil (30),

Fa = F (U, o Uk URay ), (35)
Fa = F(UR_20, UR_11, Uk Ugiay) (36)
whereUp_,,,..., U, arethe values of the regular or boundary cellsﬁbgyl ey GE+1_,
are the ghost cell values. Thlig, |, ..., Ug ,, need separate memory locations3r g |

andCy need to change the values between updatlfig ;, andUy,. Analogously, if the
trailing edge of the airfoil divides a cell into two parts, the so-called “split-cell” problen
two different values of the solution corresponding to a weighted mean on each side o
airfoil have to be maintained.

3.2. Numerical Results

For the following numerical examples the CLAWPACK package of LeVeque [5] is us
as the underlying method for the regular cells. Atthe domain boundaries standard supet
subsonic in- and outflow techniques are used. For all calculations except the one invol
the cylinder, ghost cell values are obtained by method (34).

In the first and second examples the geometry is given by a circular cylinder. Firs!
incident shock wave reflects off a cylinder. For this example the mass nonconserve
is analyzed. The second example is a subcritical Mach 0.38 inflow presented at a GA
workshop [3]. The next example is a flow over aramp, an example introduced by Woodw
and Colella resulting in a double Mach reflection [14]. Next, a transonic flow arounc
NACAO0012 airfoil described also in [3] is calculated. However, for this example Cartes
grids are not appropriate because of the smallness of the airfoil compared to the size ¢
computational domain necessary to obtain reliable results. The last example is a calcul
of a Prandtl-Meyer expansion. As in [1, 9], with this example the order of accuracy of
method can be measured numerically.
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FIG. 11. Shock wave reflecting off a cylinder at time= 0.15 (left), subcritical flow around a cylinder with
Mach 0.38 (right).

In the first example the reflection off a cylinder of an incident shock wave traveling
a relative Mach number 3.0 is studied. The computational domain is the unit square.
cylinder is located in the middle of the domain and has a radius of 0.2. The initial shc
location is just in front of the cylinder. The Courant numbefi £ 0.9. Figure 11 on the
left shows density contours for a calculation with a 30@00 grid at timet, =0.15. As
in one dimension, we make an analysis of the nonphysical mass production or loss.
timet, = 0.15 such that the shock wave is still in the computational domain, the total me
generation is

Amass= > "|Ci|(pf} = £3) — vs( — po)tn, (37)
ij

where it is summed over the regular and boundary cells|@ﬁ¢| denotes the area of the
cell Gj; lying in the computational domaims is the shock speed arigh — o) is the jump
of density across the shock wave. Table 3 shows the relative mass production for diffe
grids. The conservation is violated linearly in the grid spacing.

For the second example a circular cylinder with radius 0.5 is placed in the middle o
square with length 10.0. A subcritical Mach 0.38 inflow is studied on ax@®0 grid.

TABLE 3
Nonphysical Relative Mass Production for a Shock
Reflection Off a Cylinder at Time t, = 0.15

Grid Amass
mass

100x 100 0.0216

200x 200 0.0140

400 x 400 0.0088

800 x 800 0.0045
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The grid cells have a length 0f/40 = 0.025 such that the results can be compared wit
methods using a 12832 O-mesh, where the cells of the first layer around the cylinder ha
a length ofr /128 = 0.0245. The initial condition is a constant flow and the steady state
reached after a sufficiently large time. Figure 11 on the right shows the density contou
steady state. The maximum values for the entropy deviakos, (p/Ps)/(0/Px)’ — 1,
is ¥max = 0.0038 and for the Mach number M,x = 0.9094, which compares well with
results using O-meshes, for examplgax = 0.0048 in [8]. For a 200« 200 grid a value
Ymax = 0.0098 is obtained, which demonstrates the higher-order accuracy of the boun
treatment, since the entropy deviation here is a boundary effect.

The next example was introduced in [14] to compare different numerical schemes.
a reflection of a Mach 10 shock wave at a ramp. The resulting configuration of a dot
Mach reflection contains several fluid dynamical features, such as a moving shock w
a quasi-steady-state shock wave, a contact discontinuity, and two reflected shock w
This example with tilting the reflecting wall needs a boundary treatment to model |
reflecting boundary oblique to the grid. In [14] the incident shock wave is tilted, inste
In the computatiom\x = Ay =1/120, the angle of the ramp is 3@nd for the gas at rest
p=1.0, p=1.4 as in [14] to compare the results. The Mach 10 shock wave starts a
layers of grid cells in front of the origin of the ramp and the computation is stopped at ti
t =0.2. In Fig. 12 the results are shown using a 30@40 grid. The results compare well
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FIG. 12. Reflection of a Mach 10 shock wave at & 2Mgle at timd = 0.2 using a grid withAx = Ay =
1/120.
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FIG. 13. Grid and pressure contours for a calculation of a Mach 0.8 flow around a NACA0012 airfoil with
1.25° angle of attackAx = Ay =1/50.

with [14]. Itis very encouraging that the first reflected shock wave does not appear sme:
as it hits the boundary.

Our next example is of more practical importance, namely, a transonic steady-state 1
around a NACAO0O012 airfoil. The geometry is described in [3]. As asymptotic condition
the free-stream Mach numbbkt,, = 0.8 and the angle of attaek, = 1.25° are chosen. For
the in- and outflow condition we use a far-field correction following the ideas of Thom:
and Salas [12].

The 400x 400 Cartesian grid has a side length of 8 chords and the airfoil is placed &
distance of 3 chords from the inflow boundary. Our Cartesian gridthas- Ay =1/50,
resulting in about 100 grid cells surrounding the airfoil. No refinement of the grid at tl
leading edge is used. Thus, we cannot expect that our results can compete with |
Figure 13 shows details of the grid and @gcontour plot, wher€, = (p — poo)/(%poougo).
The pressur€, and the entropy deviatioB along the airfoil surface are shown in Fig. 14,
where cell-centered boundary values are plotted. The forces on the airfoil are given in
nondimensionalized drag and lift coefficients,

2

G = f(puuTn +pndS (38)

T peUZ L

) ! L L )
00 02 04 06 08 10
x

FIG. 14. Distribution of pressure and entropy deviation around the surface of the airfoil.
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FIG. 15. Expansion of a Mach 1.83 flow over a“3%end,h = Ax = Ay = 1/200.

2
T poolZ L

G f(pvuTn +pny)ds (39)

whereL is the chord length of the airfoil and the integration goes along an arbitrary clo:
contourSenclosing the airfoil with outward-facing normal vectos (nx, ny)". Our results
yield ¢4 =0.0205 andc =0.3118, compared witlty = 0.0226 andc =0.358 of [12],
where a 256« 64 O-mesh and a domain size of 200 chords is used. As can be seen in Fi
on the right, the numerical entropy production at the leading edge of the airfoil is of
order of the physical entropy production across the shock wave on the upper surface il
calculation. Thus, to get better results for this example the grid should be refined there
The last example is a steady-state calculation of a Prandtl-Meyer expansion for a N\
1.83 flow over a 35 bend. The exact solution is a smooth flow with constant entroj
S=p/p? and constant stagnation enthalgy= (p + p€)/p. Figure 15 shows a density
contour plot of a calculation with a 200200 grid. As introduced by Berger and LeVeque
this example can be used to analyze the order of accuracy of the method by taking

L;-norm of the error in entropy and stagnation enthalpy in the whole flow area or o
along the boundary (cf. [1, 9]):

Zl U — uc
IOkt = % (40)
32 Juij — U
€ITOhoundary= %, (41)

whereuj; is the exact solution (here entropy or stagnation enthalpyis the numerical so-
lution, >"" is a summation over all grid cells, ahd” is a summation over the boundary cells
only. Under the assumption that the error can be expressed as-e@rb?, the orderp of the
method can be obtained numerically in the whole area or only along the boundary. Tal
shows two convergence histories. For the first one, Table 4 (top), a first-order boun
treatment is used. Our first-order boundary method is given by the new boundary treat:
without the second-order correction terms in the flux calculation along the interface
boundary cells and ghost cells. The second one, Table 4 (bottom), uses the higher-
boundary treatment. The results for entropy suggest that the method is of second-
accuracy in the whole area for both the first- and the second-order boundary treatn
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TABLE 4
Convergence History for the Prandtl-Meyer Expansion, First-Order Boundary
Treatment (Top) and Higher-Order Boundary Treatment (Bottom)

Entropy Stagnation enthalpy
h Errofga Order Errofa Order
= 0.0013671 0.019595
200 ' ’
1
— 0.0003556 1.94 0.008849 1.15
400
7—](')0 0.00011875 1.96 0.0049026 1.06
Errorboundary Errorboundary
1 - -
200 0.020652 — 0.201197 —
1
— 0.008769 1.24 0.164443 0.29
400
i 0.004372 1.24 0.148709 0.18
700
Errorga EITOfiota
1 I -
— . 7 — .004332 —
200 0.0007390 0.00433
1
— . 184 2. .0017 1.
200 0.0001849 00 0.001758 30
1
200 0.00005895 2.04 0.0008545 1.29
Errorboundary Errorboundary
1 - _
200 0.009998 — 0.033900 —
1
200 0.003786 1.40 0.018621 0.87
1
— 0.001688 1.48 0.016400 0.23
700

i.e., the order in the whole domain is not affected by a lower order boundary treatm
(cf. [13]). But the order of accuracy along the boundary is better using the higher-or
boundary treatment, and the valuep£ 1.48 for the order in entropy along the boundary
is an improvement, compared with other Cartesian-grid methods, e.g., [9], whele2

is obtained, or [2], wher@ = 1.4 is obtained, using a code for the steady-state Euler equ
tions. The results for stagnation enthalpy are less satisfying, but neither in this paper nc
[9] can an explanation for this can be given.

4. CONCLUSIONS

For Cartesian-grid methods for the Euler equations, a boundary treatment is given bz
on reflecting locally the flow field at a straight boundary line. The method is higher-orc
accurate, simple, and applicable to any finite-volume method.

Numerical results in one dimension show that second-order accuracy is obtained
smooth flows also at the boundary. Despite the violation of the conservation at the bounc
correct shock reflections off the boundary in one dimension are obtained within first-or
accuracy.
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Intwo dimensions we have shown that the numerical entropy production along the bot
ary of a circular cylinder is comparable to other time-dependent methods using body-fi
grids. For a shock reflection off a cylinder it is shown that the violation of the conservatiol
of order one in the grid spacirtgand that this violation does not lead to spurious solution:
Shock smearing at the boundary is shown to be negligible for a shock wave traveling a
the boundary oblique to the grid in the case of a double Mach reflection off a ramp.
the calculation of a transonic flow past a NACA0012 airfoil, the accuracy of the drag
lift coefficients is limited, due to the high curvature of the boundary at the leading edge
the airfoil. By means of a smooth steady-state flow calculation, the order of accurac
the method in the whole domain and along the boundary is measured analytically. In
whole domain the method is second order and along the boundary we obtain an ord
1.48 which is an improvement compared with other boundary treatments.

In future research the accuracy of the two-dimensional method may be further imprc
by taking into account the curvature of the wall boundary or by improving the way ghost «
values are obtained. Also for some examples the loss of conservation could be a prol
where we would have to look for techniques to fix the conservation.
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